在使用Python的requests库进行爬虫时,可以通过以下方法来提高稳定性:
- 设置User-Agent:为了模拟正常用户的浏览行为,可以在请求头中设置不同的User-Agent,使爬虫更像一个真实用户。
import requests headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3" } url = "https://example.com" response = requests.get(url, headers=headers)
- 使用代理IP:通过使用代理IP,可以避免因爬取过多而被目标网站封禁。可以使用免费或付费的代理IP服务。
import requests proxies = { "http": "http://your_proxy_ip:port", "https": "https://your_proxy_ip:port" } url = "https://example.com" response = requests.get(url, proxies=proxies)
- 设置请求间隔:为了避免在短时间内对目标网站发起大量请求,可以设置请求间隔,降低被检测的风险。
import time import requests url = "https://example.com" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3" } for _ in range(10): # 爬取10次 response = requests.get(url, headers=headers) time.sleep(1) # 每次请求之间间隔1秒
- 错误处理:使用try-except语句来捕获可能出现的异常,如网络错误、超时等,确保爬虫在遇到问题时能够继续运行。
import requests from requests.exceptions import RequestException url = "https://example.com" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3" } try: response = requests.get(url, headers=headers) response.raise_for_status() # 如果响应状态码不是200,抛出异常 except RequestException as e: print(f"请求出错: {e}")
- 使用多线程或多进程:通过多线程或多进程并发发送请求,可以提高爬虫的抓取速度。但请注意,过多并发可能会导致目标网站服务器压力过大,甚至被封禁。
import requests from concurrent.futures import ThreadPoolExecutor url = "https://example.com" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3" } def fetch(url): try: response = requests.get(url, headers=headers) response.raise_for_status() return response.text except RequestException as e: print(f"请求出错: {e}") return None urls = [url] * 10 # 假设有10个相同的URL需要爬取 with ThreadPoolExecutor(max_workers=5) as executor: results = list(executor.map(fetch, urls))
通过以上方法,可以提高Python requests爬虫的稳定性。